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DETERMINATION OF THEEMOPHYSICAL PROPERTIES OF MATERIALS 

WITH THE HELP OF CHARACTERISTICS OF IMAGINARY FREQUENCIES 

A. V. Kozlov, A. G. Shashkov, and A. S. Trofimov UDC 536.22.083 

An effective method has been developed to determine thermophysical properties 
of materials from the available thermophysical measurements. 

The identification of the parameters of heat transfer - the coefficients of thermal 
conductivity and thermal diffusivity -- constitutes the essence of the internal inverse problem 
of thermal conduction and is reduced to determining the coefficients of the differential 
equation of thermal conduction from the available thermal measurements. The creation of 
simple engineering methods for solving such problems is a timely problem of modern thermo- 
physics. 

At present, unsteady methods of the regular regime and the initial stage of heat ex- 
change are the best developed methods [i]. The simplicity of these methods of identifica- 
tion of thermophysical characteristics makes them certainly worthwhile; however, the need 
to perform a special experiment (to create a definite law of variation of the boundary con- 
ditions, to rapidly attain the regular regime, etc.) restricts their application. Another 
disadvantage is the use of temperature values obtained experimentally at fixed times in the 
calculated dependencies for the transfer coefficient. Possible substantial fluctuations in 
the measurement errors at these times can lead to substantial errors in the result. Even 
to a greater extent, the accuracy of determination of thermophysicalcharacteristics depends 
on the quality of the experiment in algorithms [2], where the derivatives of unsteady tem- 
peratures contribute to the calculated dependencies. 

In [3], an effective method of identification has been proposed, which assumes an arbi- 
trariness in the change of the boundary conditions, and based on sufficiently simple calcu- 
lated dependencies that incorporate the integrals of the temperatures taken during the ex- 
periment. Such an approach allows one to decrease the effect of measurement errors (especi- 
ally, random errors) on the precision of the determination of thermophysical characteristics. 
However, the use by Vlasov et al. [3] of a "precise" model of heat conduction allows them to 
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obtain an analytical solution for a narrow class of problems (semiinfinite body, unbounded 
plate for boundary conditions of the first kind). 

In the present study, for the identification of thermophysical characteristics, we 
propose to use the analysis of characteristics of imaginary frequencies of transfer func- 
tions that determine dynamic properties of heat systems [4]. The advantages of the use of 
characteristics of imaginary frequencies for solving direct problems of unsteady thermo- 
mass-conduction that involve the ease of use and high precision (relative error 1-3%) of 
the approximate dependencies for the temperature calculation are treated in detail in [5]. 
We consider the advantages of the use of characteristics of imaginary frequencies as applied 
to the problems of inverse coefficients on the example of the algorithm for calculating the 
coefficient of thermal conductivity (a = const) for an unbounded plate with boundary condi- 
tions of the first kind. Below, we compare the approximate solution obtained with the exact 
solution of a similar problem given in [3], and in conclusion we present the generalization 
of the method to other cases of heat exchange. 

Mathematically the boundary-value problem is formulated in the form 

Ou (x, t) azu (x, t) 
- a  ", t ~ O ,  O < x < R ,  

Ot Ox 2 

t=0, u=0; x=0, c)u/Ox=O; x = R ,  u=q~(t). 

( 1 )  

(2 )  

The solution of (i) and (2) in the Laplace image space is of the form 

where 

~(x, s ) = $ ( s ) q > ( , ,  s), 

( J-  l,lch i/_2). ( x , s ) - - c h  x i"' -a',, 

a(x, s) = f a(x, t) exp (--sZ)dt. 
0 

(3) 

(4) 

The poles of the transfer function ~(x, s) are along the negative real semi-axis. This 
allows us, when solving both direct and inverse problems to consider r s) as a function 
of two real variables that vary in the intervals: 0 < x < R, 0 < s < ~ (the method of char- 
acteristics of imaginary frequencies [5]). Such an approach simplifies considerably the 
analysis of transfer functions, providing for high accuracy of the solutions obtained. 

If we measure the temperature of the left Ue(X = 0, t) and the right re(t) surfaces of 
the plate, then by processing these curves we can construct "experimentally" the transfer 
function 

(~ ~ o, ~) = 7e c L -  o, ~.L 
% (s) 

An analytical expression for ~(x = 0, s) is obtained from Eq. (3) for x = 0: 

1 
(x -~ 0, s) = 

ch(R 1// '~s ' / a  ' (5 )  

By equating the right sides of the last two expressions, we obtain a calculated depen- 
dence for the coefficient of thermal conductivity: 

a 
sR 2 

Arch"- (-c>(x 1 = 0, s) ) 
( 6 )  

For more complicated situations (such as heat exchange in cylindrical, spherical, and 
multilayered bodies) we cannot obtain the dependence a = f(~) explicitly. This is what re- 
stricts the area of practical application of the method [3]. An approximation of the trans- 
fer function (5) by an approximate function ~ap(S) allows one to expand the field of appli- 
cation. We consider an approximate fractionally-rational model of the first order: 
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C~p (S) :: 
R Z 

bo -}- bl -- 
aap 

(7)  

Equation (7) allows one to obtain a simple expression for the coefficient of thermal 
conductivity that has the same structure for any geometry (the difference is only in the 
magnitude of the coefficients b 0 and bl): 

blS~ 2 
a~p = ~ (s) -- bo ' (8)  

where Q(s) = ~e(S)/~e(X = 0, s). 

The value of the coefficient b 0 is determined uniquely by the value of ~(x = 0, s = 0) 
(for the plate b 0 = i). The value of b I is determined from the condition of the equality of 
the functions ~(x = 0, s) and ~ap(S) at the point s = Sopt, which is used for the determina- 
tion of aaD and is characterized by the least influence of the measurement errors Te(t) and 
Ue(X = 0, t) on the accuracy of the result (8) (below, we give an algorithm for determining 

Sopt). 

For such a selection of the coefficients with a decrease in the error of temperature 
measurements, the value of aap approaches the exact value and in the limit, in the absence 
of measurement errors, a ap = a. We note that here we neglect the effect of the calculation 
errors in the integral characteristics ~e(S) and ~e(X = 0, s) from the curves (pe(t) and 
Ue(X = 0, t) on the accuracy of aap, which is justified for the case of the application of 
special quadrature formulas [6] that provide for high accuracy. 

We determine the relative error in the calculated dependence (8) in order to select the 
optimal solution Sop t. In the first approximation 

<,==  - " ( 9 )  

If the absolute measurement error for the temperature does not exceed A, then the dif- 
ferentials in Eq. (9) are estimated in the following way [3]: 

Idq~(s)l < _A ; td~(x = o, s)l < A 
s s 

and the error e a is determined as 

where 

s,~,~(s) r (s), 

--]~ (~) 2 + 3b, s +b~ s ~ s R2 

bls %p 

For two nonnegative functions the minimum value of their product is greater than or 
equal to the product of their least values in the same interval: 

rain S~e(S----~ * (s) ~ rain ........... rain ~ (s). 
S~e(S) 

The minimum of the first function is attained at ~(s) = ~emaX/s, i.e., the optimal re- 
gime (from the viewpoint of the relative error ga ) is the regime when the temperature on 
the boundary x = R at the time t = 0+ jumps to the highest possible temperature in the ex- 
periment ~e max and then is maintained constant. The minimum of the second function is at 
the value of b I Sopt = s which allows us to determine ~ap(S = Sont) = 0.414. We mentioned 
above that the value of the coefficient b I of the approximate mode~ (7) is determined from 
the condition ~(x = 0, ~ = Sopt) = ~@~(s = Sopt), from which it follows that Sopt = 2.337, 
bl = 0.605. An estimate of the re• error in this case is of the form 

A ( lO)  
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Fig. i. A graphical determination of the value 
of the parameter Sop t. 

i.e., the error in determining the coefficient of thermal conductivity in (8) is proportion- 
al to the relative temperature measurement error k/ge maX (an analysis of the "exact" model 
[3] gives a similar dependence for ga, however, with the proportionality constant equal to 
4 . 8 ) .  

We demonstrate one of the algorithms for determining an optimal value of the dimension- 
al parameter Sopt, which is used below for calculating aap, on the example of the analysis 
of experiments 17] for the plate 2R = 16.4 mm in thickness, heated uniformly to the tempera- 
ture 19.5~ Initially both surfaces of the plate were cooled down instantly to 12~ and 
the temperature change in the center of the plate was recorded with the help of a thermo- 
couple. According to our estimates, the error in the temperature variation and in the plot 
reading [7] was not less than 5-7%. 

Above we have obtained 
S ~ / max ~pt~e(X= O, opU ge = 0,414. 

( l l )  

The problem of the determination of Sop t is reduced to the graphical solution of Eq. 
(ii). In order to do this, several values of s (usually, three are sufficient) are speci- 
fied and the corresponding integral characteristics are determined: 

SUe(X=O , S ) = S ~ U ~ ( x = O ,  t) exp ( - - s t ) d L  ( 1 2 )  
o 

When calculating the characteristics, we used the quadrature formulas [6] that account- 
ed for the behavior of the integrand (12) for large values of the exponent (st ~ 5) and en- 
sured high accuracy of calculations (the error less than 0.5%). 

Next dots are marked on the plot (see Fig. i) and are connected by a smooth curve. On 
the y axis the value of 0.414~p e max is plotted and a horizontal line is drawn to the point 
of intersection with the plot Sge(X = 0, s). The projection of the intersection point on 
the x axis gives the desired value of Sop t (in our case Sop t = 0.0058 I/sec). By substitut- 
ing Sop t in Eq. (8), we determine the coefficient of thermal conductivity, the value of which 
depends on the measurement errors least of all. In the analyzed experiment ao~ = 1.54.10 -7 
m2/sec. For comparison, we note that calculations according to the "exact" m~el [3] give 
the value of a = 1.63o10 -7 m2/sec. Thus, the relative error in the calculation of the coef- 
ficient of thermal conductivity according to the approximate model constitutes 5.5%. This 
result is quite acceptable because the error due to errors in temperature measurements, from 
(i0), is considerably larger. 

In [7], the application of the method of a regular regime gave the value a r = 1.06.10 -7 
m2/sec. A considerable error of this result (( O--ar)/a.100 = 35%) is, in our opinion, due 
to strong influence of the errors in temperature measurements (they are high in experiments 
[7]) on the accuracy in determining a from the equations for a regular regime. 

Simplicity and good accuracy of the dependencies (8) even for the comparably "rough" 
model and experiment allow us to recommend the method for the identification of thermophysi- 
cal characteristics of materials, and also for a nondestructive complex determination of the 
product properties (a, i, c, p). 
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The method described can be applied effectively also to the identification of geometric 
characteristics of the product parts. 

We note another advantage of the method. It is that thermophysical characteristics are 
determined from the values of the integrals of the measured temperatures (or thermal flows), 
i.e., the entire range of the temperature variation in the experiment is considered. As a 
result we obtain the "average" value of the determined parameters in the given temperature 
interval. Thus, the nonlinearity of the real problem, the dependence of the thermophysical 
parameters on temperature, is accounted for indirectly. 

In conclusion we list the main stages in solving the inverse problem of thermal conduc- 
tion for the coefficients (both linear and two- and three-dimensional). All the measurements 
of the temperature and thermal flows that can be conducted without violation of the thermal 
(or technological) regime are scheduled for the considered part. The direct problem is 
solved (exactly or approximately) in the image space. Possible functional relationships are 
written for the parameters to be determined and the values to be measured. Values are de- 
termined for the parameters of the calculated dependencies for which the measurement errors 
affect the result least of all. 

NOTATION 

u(x, t) = T(x, t) - To, relative temperature, deg.K; T(x, s), transfer function; s, 
variable of the Laplace transform, I/sec; a, coefficient of thermal conductivity, m2/sec. 
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